Hybrid Classifiers for Object Classification with a Rich Background
نویسندگان
چکیده
The majority of current methods in object classification use the one-against-rest training scheme. We argue that when applied to a large number of classes, this strategy is problematic: as the number of classes increases, the negative class becomes a very large and complicated collection of images. The resulting classification problem then becomes extremely unbalanced, and kernel SVM classifiers trained on such sets require long training time and are slow in prediction. To address these problems, we propose to consider the negative class as a background and characterize it by a prior distribution. Further, we propose to construct ”hybrid” classifiers, which are trained to separate this distribution from the samples of the positive class. A typical classifier first projects (by a function which may be non-linear) the inputs to a one-dimensional space, and then thresholds this projection. Theoretical results and empirical evaluation suggest that, after projection, the background has a relatively simple distribution, which is much easier to parameterize and work with. Our results show that hybrid classifiers offer an advantage over SVM classifiers, both in performance and complexity, especially when the negative (background) class is large.
منابع مشابه
A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملA Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012